Pinky Rani Assistant Professor (Guest Faculty) Department of Economics Maharaja College Veer Kunwar Singh University, Ara Class: B.A. Economics (Part-3) Paper: 07 Topic- Coefficient of Correlation by Indirect method Date: 21-02-2024

	X Y: X 25 26 27 27 28 29 30 31 32	$\begin{array}{c} 25 & 2 \\ 25 & 2 \\ 103 & 10 \\ \hline x & from \\ 355 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 2$	$\begin{array}{c} 6y & mc \\ 6 & 27 \\ 2 & 105 \\ \hline \\ 2 & 105 \\ \hline \\ (-3)^2 = 9 \\ (-2)^2 = 4 \\ (-2)^2 = 4 \\ (-2)^2 = 4 \\ (-1)^2 = 1 \\ (0)^2 = 0 \\ (1)^2 = 1 \\ (2)^2 = 4 \\ (3)^2 = 9 \end{array}$	lirect 27 107 103 102 105 107 108. 111 110 113 115	28 2. 108 11 9 from assu- med average 110 103-110 =-7 102-110=-8 105-110=-5 107-110=-3 108-110=-2 111-110=-1 110-110=3 115-110=5	ficient of y^2 resoluct y^2 resoluct y^2 resoluct xy $(-7)^2 = 49 - 4x - 7 = 28$ $(-8)^2 = 64 - 3x - 8 = 24$ $(-5)^2 = 25 - 2x - 5 = +10$ $(-3)^2 = 9 - 2x - 3 = 6$ $(-2)^2 = 4 - 1x - 2 = 2$ $(-1)^2 = 1 - 1x - 2 = 2$ $(-1)^2 = 1 - 1x - 2 = 2$ $(-1)^2 = 0 - 1x - 0 = 0$ $(3)^2 = 9 - 2x - 3 = 6$ $(5)^2 = 25 - 3x - 5 = 15$
1 KU	x=255	Ex=-6	$\Xi x^2 = 48$	EY=9;	74 21=-16	$\Sigma y^2 = 186 \Sigma x y = g$

 $\overline{X} = \underbrace{\Sigma X}_{\partial i} = \underbrace{255}_{9} = \underbrace{28.33}_{\text{qverage}} \underbrace{\text{qssumed}}_{\text{qverage}} \underbrace{29}_{9}$ $\overline{Y} = \underbrace{SY}_{9} = \underbrace{974}_{9} = \underbrace{108.22}_{\text{qverage}} \underbrace{\text{qssumed}}_{\text{qverage}} \underbrace{110}_{\text{qverage}}$ $\mathcal{T} = \frac{\mathcal{Z}xy \cdot \eta - (\mathcal{E}x \cdot \mathcal{E}y)}{\sqrt{\mathcal{E}x^2 \cdot \eta - (\mathcal{E}x)^2 / [\mathcal{E}y^2 \cdot \eta - (\mathcal{E}y)^2]}}$ $\mathcal{T} = \frac{91\times9 - (-6\times - 1.6)}{\sqrt{48\times9 - (-6)^2 / [186\times9 - (-16)^2 / [1$ $\delta = \frac{819 - 96}{\sqrt{7432 - 367/1674 - 2567}}$ $\sigma = \frac{723}{\sqrt{396 \times 1418}}$ $\tau = \frac{723}{\sqrt{561528}}$ $\sigma = \frac{723}{749.35}$ High degree of Correlation $\sigma = \underbrace{0.9648}_{\text{Migh}}$ High degree of correlation allymed mean.